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CH 4: Deflection and Stiffness 

Stress analyses are done to ensure that machine elements will not fail due to stress 

levels exceeding the allowable values. However, since we are dealing with deformable 

bodies (not rigid), deflections should be considered also where they are in many cases 

more limiting than stresses. Take for example shafts where excessive deflection will 

interfere with the function of the elements mounted on the shaft and might cause 

failure of the system, thus usually shafts are designed based on deflections rather than 

stresses. 

 

Spring Rates 

In most types of loading situations, the stress developed in the element (bar, shaft, 

beam, etc.) is linearly related to the loading. As long as the stress in the material 

remains within the linear elastic region, the stress is also linearly related to the 

deflection. Therefore, there is a linear relation between load and deflection and 

elements under loading behave similar to linear springs, and thus we can define the 

spring rate or spring constant for the element as: 

 

                           𝑘 =
𝐿𝑜𝑎𝑑𝑖𝑛𝑔 

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 
 

 

Tension, Compression and Torsion 

 For a bar with constant cross-section the deformation is found as: 

                                        𝛿 =
𝐹 𝐿

𝐴 𝐸
 

Thus, the spring constant for an axially loaded bar is: 

                                       𝑘 =
𝐴 𝐸

𝐿
 

 For a round shaft subjected to torque, the angular deflection is found as: 

                                      𝜃 =
𝑇𝐿

𝐺𝐽
 

Axial, lateral, bending, twisting, etc. 

Axial, lateral, moment, torque, etc. 

𝜃 in radians 
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Thus, the spring constant is: 

                                    𝑘 =
𝐺 𝐽

𝐿
 

Deflection Due to Bending 

The deflection of beams is much larger than that of axially loaded elements, and thus 

the problem of bending is more critical in design than other types of deformation. 

- Shafts are treated as beams when analyzed for lateral deflection. 

 

 The beam governing equations are: 

                    Load intensity              
𝑞

𝐸 𝐼
=

𝑑4𝑦

𝑑𝑥4 

 

                   Shear force                   
𝑉

𝐸𝐼
=

𝑑3𝑦

𝑑𝑥3 

 

                   Moment                        
𝑀

𝐸 𝐼
=

𝑑2𝑦

𝑑𝑥2 

 

                   Slope                              𝜃 =
𝑑𝑦

𝑑𝑥
 

 

                 Deflection                       𝑦 = 𝑓(𝑥) 

 

 Knowing the load intensity function, we can integrate four times (using the 

known boundary conditions to evaluate the integration constants) to get the 

deflection.  

 However, in most cases, the expression of bending moment is easy to find (using 

sections) and thus we start from the moment governing equation and integrate 

to get the slope and deflection.  
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Example: The beam shown has constant cross-section 

and it is made from homogeneous isotropic material. 

Find the deflection, slope and the location and value of 

maximum slope. 

Solution:  

                                             
𝑑2𝑦

𝑑𝑥2
=

𝑀

𝐸 𝐼
= −

𝑃 𝑥

𝐸 𝐼
   

       Integrating           
𝑑𝑦

𝑑𝑥
= −

𝑃𝑥2

2 𝐸 𝐼
+ 𝐶1           (1) 

       Integrating          𝑦 = −
𝑃𝑥3

6 𝐸 𝐼
+ 𝐶1𝑥 + 𝐶2      (2)     

B.C.’s:                 1   𝑦 = 0     @    𝑥 = 𝐿                 2   
𝑑𝑦

𝑑𝑥
= 0     @    𝑥 = 𝐿  

Substituting B.C. 2  in equation (1) we get: 

                                             𝐶1 =
𝑃𝐿2

2 𝐸 𝐼
 

                                         𝑦 = −
𝑃𝑥3

6𝐸𝐼
+

𝑃𝐿2

2𝐸𝐼
𝑥 + 𝐶2      (3) 

Substituting B.C. 1  in equation (3) we get: 

                                               0 = −
𝑃𝐿3

6𝐸𝐼
+

𝑃𝐿3

2𝐸𝐼
+ 𝐶2 

                                           𝐶2 = −
𝑃𝐿3

3𝐸𝐼
 

Thus,                      𝑦 =
𝑃

6𝐸𝐼
(−𝑥3 + 3𝐿2𝑥 − 2𝐿3)  

  and the slope          
𝑑𝑦

𝑑𝑥
=

𝑃

2𝐸𝐼
(𝐿2 − 𝑥2)  

Maximum slope occurs when:   
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) = 0             𝑥 = 0 

                                        (
𝑑𝑦

𝑑𝑥
)

𝑥=0
=

𝑃𝐿2

2𝐸𝐼
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Beam Deflections by Superposition 

Superposition resolves the effect of combined loading on a structure by determining 

the effects of each load separately and adding the results algebraically. 

 Superposition: Resolve, Find, Add. 

 

 The resulting reactions, deflections and slopes of all common types of loading 

and boundary conditions are available and can be found in specialized books 

such as “Roak’s Formulas for Stress and Strain”. 

 
 Table A-9 gives the results for some common cases. 

Note: superposition is valid as long as the deflections are small such that the 

deformation resulting from one type of loading will not alter the geometry. Also, each 

effect should be linearly related to the load that produces it. 

Example:                                                      

 

 

Solved by integration                                                                                                 

 

Table A-9, Case 6                           

 

Table A-9, Case 8                          

 

Table A-9, Case 10                                              

 

 

 

Note that: 

RA=R1+R3+R5+R7 

RB=R2+R4+R6+R8 

See Examples 4-3  &  4-4 from text 
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Beam Deflections by Singularity Functions 

As shown in Ch. 3, singularity functions can be used to write an expression for loading 

over a range of discontinuities. 

 The loading intensity function 𝑞(𝑥) can be integrated four times to obtain the 

deflection equation𝑦(𝑥). 

(Recall the singularity functions integration and evaluation rules which has been 

introduced in Ch.3) 

 

 

Strain Energy 

When loads are applied to an elastic member, the member will elastically deform, thus 

transferring the work done by the load into potential energy called strain energy. 

 If a load “𝐹” is applied to a member and as a result the member deformed a 

distance “𝑦”, then the work done by the load is (if the relation between the load 

and deformation is linear): 

                           𝑈 =
1

2
𝐹𝑦                      but,           𝑦 =

𝐹

𝑘
                                 

                                   𝑈 =
𝐹2

2𝑘
 

 

 This equation defines the strain energy in general where the load can also mean 

a torque or moment provided that consistent units are used for “𝑘”. 

 

 Therefore, the strain energy for different types of loading can be defined as 

follows:  

 

See Examples 4-5 & 4-6 from text 

 

spring rate 
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- Where 𝐶 is the cross-section correction factor (Table 4-1 in text) : 

𝐶 = 1.2 for rectangular sections 

𝐶 = 1.11  for circular sections 

𝐶 = 2  for thin-walled circular sections 

𝐶 = 1  for box and structural sections (where only the area of the 

web is used) 

 

Example: The cantilever beam shown has a 
stepped square cross-section and it is made of 
steel (𝐸 = 210 𝐺𝑃𝑎, 𝐺 = 75 𝐺𝑃𝑎).  
Find the stain energy in the beam.   
 

Solution:                      

                   𝑀 =  500 𝑥  𝑁. 𝑚𝑚      &      𝑉 = 500 𝑁 

                              𝑈𝑀 =  𝑈𝑀1
+ 𝑈𝑀2

= ∫
𝑀2

2𝐸𝐼1
𝑑𝑥 + ∫

𝑀2

2𝐸𝐼2
𝑑𝑥

500

250

250

0
             =

1

2𝐸
[∫

25×104 𝑥2

4×105
𝑑𝑥 + ∫

25×104 𝑥2

8×105
𝑑𝑥

500

250

250

0
] =

1

2(210×103)
[|

25 𝑥3

120
|

0

250

+ |
25 𝑥3

240
|

250

500

] 

Loading Type 
Factors 

Involved 

Strain Energy 
(All factors are 

constant with 𝒙) 

Strain Energy 

(General expression) 

Axial Force 

 
F, E, A 𝑈 =

𝐹2𝐿

2𝐸𝐴
 𝑈 = ∫

𝐹2

2𝐸𝐴
 𝑑𝑥

𝐿

0

 

Bending Moment 

 
M, E, I 𝑈 =

𝑀2𝐿

2𝐸𝐼
 𝑈 = ∫

𝑀2

2𝐸𝐼
 𝑑𝑥

𝐿

0

 

Torque 

 
T, G, J 𝑈 =

𝑇2𝐿

2𝐺𝐽
 𝑈 = ∫

𝑇2

2𝐺𝐽
 𝑑𝑥

𝐿

0

 

Transverse Shear 

 
V, G, A 𝑈 = 𝐶

𝑉2𝐿

2𝐺𝐴
 𝑈 = ∫ 𝐶

𝑉2

2𝐺𝐴
 𝑑𝑥

𝐿

0

 

Due to moment 
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                      𝑈𝑀 = 34.877 𝑚𝐽 

                           𝑈𝑉 =  𝑈𝑉1
+ 𝑈𝑉2

= 𝐶
𝑉2𝐿1

2𝐺𝐴1
+ 𝐶

𝑉2𝐿2

2𝐺𝐴2
 

                       = 1.2
5002

2(75×103)
(

250

2.2×103
+

250

3.1×103) = 0.389 𝑚𝐽 

                         𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝑀 + 𝑈𝑉 = 35.266 𝑚𝐽  

 

 

Castigliano’s Theorem 

Castigliano’s theorem is one of the energy methods (based on strain energy) and it can 

be used for solving a wide range of deflection problems. 

 Castigliano’s theorem states that when a body is elastically deformed by a 

system of loads, the deflection at any point “𝑃” in any direction “𝑎” is equal to 

the partial derivative of the strain energy with respect to a load at “𝑃” in the 

direction “𝑎”. 

The theory applies to both linear and rotational deflections 

                                                       𝛿𝑖 =
𝜕𝑈

𝜕𝐹𝑖
 

Where 𝛿𝑖 is the displacement of the point of application of the force 𝐹𝑖 in the 

direction of 𝐹𝑖  

             𝑜𝑟,                                   𝜃𝑖 =
𝜕𝑈

𝜕𝑀𝑖
 

Where 𝜃𝑖 is the rotation (in radians) at the point of application of the moment 

𝑀𝑖 in the direction of  𝑀𝑖 

 It should be clear that Castiglione’s theorem finds the deflection at the point of 

application of the load in the direction of the load. 

Q: What about if there is no load at the desired point in the desired direction? 

A:  We apply a fictitious “dummy” load “𝑄” at that point in the desired direction. 

Due to shear 
Very small compared to the 

strain energy due to moment 

Usually the strain energy due to 

shear is neglected for long beams 
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Procedure for using Castigliano’s theorem: 

- Obtain an expression for the total strain due to all loads acting on the member 
(including the dummy load if one is used). 

- Find the deflection of the desired point (in the desired direction) as: 
 

                                                      𝛿𝑖 =
𝜕𝑈

𝜕𝐹𝑖
 

or if a dummy load 𝑄𝑖 is used: 

                                          𝛿𝑖 = [
𝜕𝑈

𝜕𝑄𝑖
]

𝑄𝑖=0

 

Note: If the strain energy is in the form of integral, it is better to take the partial 

derivative with respect to the load “𝐹𝑖” before integrating. 

 

 

 

Example: For the cantilevered bar subjected to the 
horizontal load “P” as shown. Find the vertical deflection at 
the free end “Point A”. (Neglect the transverse shear).  

Solution:  

The components that define the total strain energy are: 

- Bending in AB, where MAB = P y 
- Bending in BC, where MBC = P h+ Q x 
- Axial load in AB = Q 
- Axial load in BC = P 

 

Thus, the total strain energy is: 

          𝑈 = ∫
𝑃2𝑦2

2𝐸𝐼
𝑑𝑦 + ∫

(𝑃ℎ + 𝑄𝑥)2

2𝐸𝐼
𝑑𝑥 +

𝑄2ℎ

2𝐸𝐴
+

𝑃2𝐿

2𝐸𝐴

𝐿

0

ℎ

0

 

After taking the derivative, set 

𝑄𝑖 = 0 to find the deflection 

If the deflection turns out to be 

negative, it means that it is in the 

opposite direction of the load 

See Examples 4-8 & 4-9 from text 

 

Since there is no vertical 

load acting at point ”A”, we 

add a dummy load 𝑄 

Since the axial loads are 
of constant magnitude 
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The vertical deflection at “A” is: 

𝛿𝐴 = [
𝜕𝑈

𝜕𝑄
]

𝑄=0

= ∫
𝑥(𝑃ℎ + 𝑄𝑥)

𝐸𝐼

𝐿

0

𝑑𝑥 +
𝑄ℎ

𝐸𝐴
=

𝑃ℎ𝑙2

2𝐸𝐼
+

𝑄𝑙3

3𝐸𝐼
+

𝑄ℎ

𝐸𝐴
 

 Set 𝑄 = 0 

                                        𝛿
𝐴

=
𝑃ℎ𝑙2

2𝐸𝐼
 

 

The expressions for finding deflections using Castigliano’s theorem can be simplified 

and written as:  

                          𝛿𝑖 =
𝜕𝑈

𝜕𝐹𝑖
= ∫

1

𝐴𝐸
(𝐹

𝜕𝐹

𝜕𝐹𝑖
)𝑑𝑥                   𝑓𝑜𝑟 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑟 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

                          𝛿𝑖 =
𝜕𝑈

𝜕𝐹𝑖
= ∫

1

𝐸𝐼
(𝑀

𝜕𝑀

𝜕𝐹𝑖
) 𝑑𝑥                  𝑓𝑜𝑟 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 

                          𝜃𝑖 =
𝜕𝑈

𝜕𝑇𝑖
= ∫

1

𝐺𝐽
(𝑇

𝜕𝑇

𝜕𝑇𝑖
) 𝑑𝑥                  𝑓𝑜𝑟 𝑇𝑜𝑟𝑠𝑖𝑜𝑛 

 

 

Deflection of Curved Beams 

Examples of curved beams include machine frames, springs, clips, etc. The deflection of 

curved beams can be found using Castigliano’s theorem. 

 Consider a curved beam subjected to “in-Plane” 

loading as shown:  

- Note that the load “𝐹” is purely shear at θ = 0, 

and purely normal at θ = 90°. Thus, polar 

coordinates are used to represent the internal 

loading. 

See Example 4-11 from text 
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 The internal loading acting at any angle θ is:         

      Shear:                          Fr = F cos θ 

      Axial:                           Fθ = F sin θ 

     Bending Moment:     M = F R sin θ         

 The total strain energy in the beam consists of four components: 

 Strain energy due to bending moment 𝑀: 

                                          𝑈1 = ∫
𝑀2

2𝐴𝑒𝐸
𝑑𝜃 

Where “𝑒” is the eccentricity (𝑒 = 𝑅 − 𝑟𝑛) 

However, when the radius “𝑅” is large compared to the height “ℎ” the 

strain energy due to moment can be approximated as: 

                                        𝑈1 = ∫
𝑀2𝑅

2𝐸𝐼
𝑑𝜃        𝑓𝑜𝑟

𝑅

ℎ
> 10 

 The strain energy due to normal “axial” force 𝐹𝜃  has two components: 

- Due to the axial force 𝐹𝜃: 

                                       𝑈2 = ∫
𝐹𝜃

2𝑅

2𝐴𝐸
𝑑𝜃 

- Due to the moment produced by the axial force 𝐹𝜃  (which has an opposite 
direction to the moment 𝑀): 
 

                                       𝑈3 = − ∫
𝑀𝐹𝜃

𝐴𝐸
𝑑𝜃 

 

  

 The strain energy due to shear force 𝐹𝑟  

                                      𝑈4 = ∫ 𝐶
𝐹𝑟

2𝑅

2𝐴𝐺
𝑑𝜃 

Where “𝐶” is the cross-section correction factor 

Because it causes deflection in the 

direction opposite to the force” 𝐹” 
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 According to Castigliano’s theorem, the deflection in the direction of the force 

“𝐹” is found as: 

                                     𝛿 =
𝜕𝑈

𝜕𝐹
=

𝜕𝑈1

𝜕𝐹
+

𝜕𝑈2

𝜕𝐹
+

𝜕𝑈3

𝜕𝐹
+

𝜕𝑈4

𝜕𝐹
 

Taking the partial derivatives and integrating between 0 to π, then 

simplifying we get:  

                                         𝛿 =
𝜋𝐹𝑅2

2𝐴𝑒𝐸
−

𝜋𝐹𝑅

2𝐴𝐸
+

𝜋𝐶𝐹𝑅

2𝐴𝐺
 

 Note that the first term (which is due to moment) will be much larger than the 

other two terms when 𝑅 is large, since it has 𝑅2, and thus the other terms can 

be neglected and we can use the approximate expression of strain energy for 

𝑅/ℎ >  10 which gives an approximate result: 

                                            𝛿 ≅
𝜋𝐹𝑅2

2𝐸𝐼
 

 

Example: For the beam shown, find the vertical deflection 
at point “A” considering the moment only and knowing that 
R/h>10 for the curved portion.  

Solution:  

Since the moment only is considered, the total strain energy 

has two components: 

Due to moment in AB : 

               MAB = Fx  

Due to moment in BC : 

              MBC = FL + FR ( 1 - cos θ ) 

𝑈 = 𝑈𝐴𝐵 + 𝑈𝐵𝐶 = ∫
𝑀𝐴𝐵

2

2𝐸𝐼
𝑑𝑥

𝐿

0

+ ∫
𝑀𝐵𝐶

2

2𝐸𝐼
𝑅 𝑑𝜃

𝜋 2⁄

0
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𝛿 =
𝜕𝑈

𝜕𝐹
= ∫(𝐹𝑥)

𝑥

𝐸𝐼
𝑑𝑥 + ∫ (𝐹𝐿 + 𝐹𝑅(1 − cos θ))

(𝐿 + 𝑅(1 − 𝑐𝑜𝑠𝜃))

𝐸𝐼
𝑅𝑑𝜃

𝜋/2

0

𝐿

0

 

                 𝛿 =
𝐹

12𝐸𝐼
{4𝐿3 + 3𝑅[2𝜋𝐿2 + 4(𝜋 − 2)𝐿𝑅 + (3𝜋 − 8)𝑅2]}  

 

Statically Indeterminate Problems 

A statically indeterminate problem has more unknown reactions than what can be 

found using static equilibrium equations (i.e., number of unknown is more than the 

number of available equations).  

 The additional supports that are not necessary 

to keep the member in equilibrium are called 

redundant supports and their reactions are called “redundant reactions”. 

 The number of redundant reactions is defined as the degree of indeterminacy, 

and the same number of additional equations is needed to solve the problem. 

How to solve statically indeterminate problems? 

 Using integration or singularity functions: 

1. Write the equations of static equilibrium in terms of applied loads and the 
unknown reactions. 

2. Obtain the expressions for slope and deflection of the beam. 
3. Apply the boundary conditions consistent with the restraints “reactions” 
4. Solve the equations obtained from steps 1 and 3. 

 

 Using Superposition: 

- Choose the redundant reaction(s). 
- Write the equations of static equilibrium for the remaining reactions in 

terms of applied loads and the redundant reaction. 
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- Using superposition divide the loading where once the applied loading is 
present and the redundant reaction is removed, and the other time the 
applied load is removed and the redundant reaction is present. 

- Find the deflection (can be found from tables or using Castigliano’s 
theorem) at the location of the redundant reaction in both cases and use 
that as an additional compatibility equation where the sum of the 
deflections is zero. (note that if the redundant reaction is a moment, the 
corresponding deflection will be slope) 

- Solve the compatibility equation(s) for the redundant reaction, and then 
find the remaining reactions from the equilibrium equations. 

 
Example: 

                                                                                                                                 

                                

 

 Compatibility equations: 

            𝛿1 + 𝛿2 + 𝛿3 = 0  

                  𝜃1 + 𝜃2 + 𝜃3 = 0        

      

        where:    

                    M1 = M1’+M1’’+M1’’’     

                    R1 = R1’+R1’’+R1’’’              

 

 

 

Example: Determine the reactions for the beam 
shown using superposition. 

 

 

Solved for the 

redundant reactions 
R2 & M2 

Can be used to 

find R1 & M1 

Choosing R2 & M2 as the 
two redundant reactions 
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Solution:  

From equilibrium we get: 

𝑅1 =
𝐹

2
+

𝑀1

𝐿
         (1) 

𝑅2 =
𝐹

2
−

𝑀1

𝐿
         (2) 

From Table A-9 (case 5): 

𝜃1 = [
𝑑𝑦

𝑑𝑥
]

𝑥=0
= [

𝐹

48𝐸𝐼
(12𝑥2 − 3𝐿2)]

𝑥=0
= −

𝐹𝐿2

16𝐸𝐼
 

From Table A-9 (case 8) and setting a = 0 we get: 

                𝜃2 = [
𝑑𝑦

𝑑𝑥
]

𝑥=0
= [

𝑀1

6𝐸𝐼𝐿
(3𝑥2 + 2𝐿2)]

𝑥=0
=

𝑀1𝐿

3𝐸𝐼
 

Compatibility:    

          𝜃1 + 𝜃2 = 0                  
𝑀1𝐿

3𝐸𝐼
−

𝐹𝐿2

16𝐸𝐼
= 0                     𝑀1 =  

3𝐹𝐿

16
        

Substituting in equations 1 & 2 we get: 

                                       𝑅1 =
11𝐹

16
      &        𝑅2 =

5𝐹

16
 

See the solution in Example 4-14 in the text book 

 

 

Compression Members 

The analysis and design of compression members “Columns” is different from 
members loaded in tension. 

A column is a straight and long (relative to its cross-section) bar that is subjected to a 
compressive axial load. A column can fail due to buckling (a sudden, large lateral 
deflection) before the compressive stress in the column reach its allowable (yield) 
value. 

Choosing the reaction 𝑀1to 

be the redundant reaction 
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 Buckling or “elastic instability” can cause catastrophic failure of structures. To 
understand why buckling happens, it is important to understand equilibrium 
regimes. There are three states of equilibrium: 

- Stable Equilibrium: when the member is moved it 
tends to return to its original equilibrium position.  

- Neutral Equilibrium: when the member is moved from 

its equilibrium position, it is still in equilibrium at the 

displaced position.  

- Unstable Equilibrium: when the member is moved 
from its equilibrium position it becomes imbalanced 
and accelerates away from its equilibrium position.  

 

 With increasing compressive loading, the state of equilibrium of a column 
changes from stable to neutral to unstable. 
 

 The load that causes a column to become unstable is called the “critical buckling 
load” where under unstable equilibrium condition; any small lateral movement 
will cause buckling (catastrophic failure). 
 

 According to geometry and loading, columns can be categorized as: 
- Long columns with central loading. 
- Intermediate length columns with central loading. 
- Columns with eccentric loading. 
- Stratus or short columns with eccentric loading. 

 

Long Columns with Central Loading 
 

The critical “buckling” load for long columns with central loading is predicted by Euler 

formula and it depends on: 

- End conditions: four types of end conditions; pinned-pinned, fixed-fixed, fixed-
pinned and fixed-free. 

- The column material “𝐸”.  
- Geometry: length and cross-section.  

 

 Consider a pinned-pinned column of length “𝐿” and subjected to axial load “𝑃”.    

   - Assume that the column became slightly bent. 
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The bending moment developed in the column is:  

           𝑀 = −𝑃𝑦 

Using the beam governing equation: 

                                 
𝑑2𝑦

𝑑𝑥2
=

𝑀

𝐸𝐼
 

                          
𝑑2𝑦

𝑑𝑥2
= −

𝑃

𝐸𝐼
𝑦 

    or   

                              
𝑑2𝑦

𝑑𝑥2
+

𝑃

𝐸𝐼
𝑦 = 0 

 

Which is a homogeneous, second order differential equation. The general 

solution for the differential equation is: 

                         𝑦 = 𝐴 𝑠𝑖𝑛√
𝑃

𝐸𝐼
𝑥 + 𝐵 𝑐𝑜𝑠√

𝑃

𝐸𝐼
𝑥                  (1) 

The equation can be evaluated using the boundary conditions: 

1. 𝑦 = 0 @ 𝑥 = 0 
2. 𝑦 = 0 @ 𝑥 = 𝐿 

 

From B.C.1:            𝐵 = 0 

From B.C.2:            0 = 𝐴 𝑠𝑖𝑛√
𝑃

𝐸𝐼
𝐿 

 

The constant “𝐴” cannot be zero because that is a trivia solution which means 

that the column will not be buckle. Thus, 

                                                 𝑠𝑖𝑛√
𝑃

𝐸𝐼
𝐿 = 0 

This is satisfied when: 

                                        √
𝑃

𝐸𝐼
𝐿 = 𝑛𝜋                       where  𝑛 = 1,2,3 … 

Solving for “𝑃” we get: 
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                                                𝑃 =
𝑛2𝜋2𝐸𝐼

𝐿2
 

where the smallest “𝑃” is obtained for 𝑛 = 1  (The first mode of buckling) 

 

Thus, the critical load “𝑃𝑐𝑟” for a column with pinned ends is:  

 

                                          𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿2
              𝐸𝑢𝑙𝑒𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 

Substituting back in equation (1) we get the 

deflection curve: 

                                             𝑦 = 𝐴 𝑠𝑖𝑛
𝜋𝑥

𝐿
 

which is a half-wave  

 

 It should be realized that for columns with non-circular cross-

section, the column will buckle about the axis of the cross-section 

having the smallest moment of inertia (the weakest axis).  

 

 Using the relation 𝐼 = 𝐴𝑘2  where “𝐴” is the cross-sectional area and “𝑘” is the 

radius of gyration, we can write Euler formula in a more convenient form: 

                                                       𝜎𝑐𝑟 =
𝑃𝑐𝑟

𝐴
=

𝜋2𝐸

(𝐿/𝑘)2
 

 

where the ratio (𝐿/𝑘) is called the “slenderness ratio”  

 This ratio (rather than the actual length) is used to classify columns in to 

length categories. 

 

 The critical loads for columns with different end conditions can be obtained by 

solving the differential equation and it can be seen by comparing the buckled 

shapes. 

Critical buckling stress 
The stress value that will 

cause a column to be in 

unstable equilibrium condition 
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 Euler formula for different end conditions 

can be written in the form: 

 

                                      𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿𝑒
2

 

      where 𝐿𝑒  is the “effective length” 

Or alternatively Euler formula can be 

written as: 

                                    𝑃𝑐𝑟 =
𝐶𝜋2𝐸𝐼

𝐿2
    𝑜𝑟    𝜎𝑐𝑟 =

𝑃𝑐𝑟

𝐴
=

𝐶𝜋2𝐸

(𝐿/𝑘)2
 

where 𝐶 is the “end-condition constant” 

 In reality it is not possible to fix an end (even if it is welded); thus, recommended 

“realistic” values of 𝐶 are given in Table 4-2. 

 

 

 Plotting the Euler critical stress vs. the 

slenderness ratio we get: 

 

 It is noted that for slenderness ratio 

less than that of point “T”; buckling 

occurs at a stress value less than that 

predicted by Euler formula (it follows 

the dashed line). 

 Thus, the Euler formula is used for slenderness ratios larger than (L/k)1 which is 

given as:  

                                                     (
𝐿

𝑘
)

1
= √

2𝜋2𝐶𝐸

𝑆𝑦
 

Limiting 

slenderness ratio 
Long columns:  (

𝐿

𝑘
) > (

𝐿

𝑘
)

1
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Intermediate-Length Columns with Central Loading 

For columns with slenderness ratio smaller than (L/k)1, Euler formula cannot predict 

the critical buckling load. For this range the Johnson formula is used which is a 

parabolic fit between “𝑆𝑦” and point “T”. 

 The Johnson formula predicts the critical stress as: 

                        𝜎𝑐𝑟 =
𝑃𝑐𝑟

𝐴
= 𝑆𝑦 −

𝑆𝑦
2

4𝜋2𝐶𝐸
(

𝐿

𝑘
)

2

       𝑓𝑜𝑟   
𝐿

𝑘
< (

𝐿

𝑘
)

1
 

Or alternatively using the effective length “𝐿𝑒” it is written as: 

                        𝜎𝑐𝑟 = 𝑆𝑦 −
𝑆𝑦

2

4𝜋2𝐸
(

𝐿𝑒

𝑘
)

2

 

 

Example: A column with one end fixed and the other free is to be made of Aluminum 

alloy 2014 (E=72GPa, Sy=97MPa). The column cross-sectional area is to be 600 mm
2 

and its length is 2.5 m. 

Find the critical buckling load for the following cross-sections: 

a) A solid round bar 
b) A solid square bar 

Solution:  

Fixed-Free:    𝐶 = 1/4 

a) Round bar  

            𝐴 =
𝜋

4
𝑑2          𝑑 = √

4𝐴

𝜋
= √

4(600)

𝜋
= 27.64 𝑚𝑚 

       Moment of Inertia:       𝐼 =
𝜋

64
𝑑4 =

𝜋

64
(27.64)4 = 28650 𝑚𝑚4      

       Radius of gyration:        𝑘 = √
𝐼

𝐴
= √

28650

600
= 6.91 𝑚𝑚  

       Slenderness ratio:      (
𝐿

𝑘
) =

2500

6.91
= 361.8 
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       Limiting slenderness ratio: 

                                    (
𝐿

𝑘
)

1
= √

2𝜋2𝐶𝐸

𝑆𝑦
= √

2𝜋2(0.25)(72 × 109)

97 × 106
= 60.52 

       Comparing:     361.8 > 60.52              Long column (𝑢𝑠𝑒 𝐸𝑢𝑙𝑒𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎)       

                         𝑃𝑐𝑟 =
𝐶𝜋2𝐸𝐼

𝐿2
=

(0.25)𝜋2(72 × 109)(28.65 × 10−9)

2.52
= 814.4 𝑁  

b) Square bar     

                   𝐴 = 𝑏2          𝑏 = √𝐴 = √600 = 24.5 𝑚𝑚 

                   𝐼 =
𝑏4

12
=

24. 54

12
= 30000 𝑚𝑚4 

                  𝑘 = √
𝐼

𝐴
= √

30000

600
= 7.07 𝑚𝑚  

                 (
𝐿

𝑘
) =

2500

7.07
= 353.6   

                       353.6 > 60.52                   Long column (𝑢𝑠𝑒 𝐸𝑢𝑙𝑒𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎) 

                         𝑃𝑐𝑟 =
(0.25)𝜋2(72 × 109)(30 × 10−9)

2. 52
= 852.7 𝑁  

 

 The example shows that for the same cross-sectional area the square section has 
slightly higher critical buckling load than the circular one. 
 

 To increase the critical buckling load without increasing the cross-sectional area, 
hollow tube sections are used (since they have higher moment of inertia). 
 

 When thin-walled hollow tubes are used, wall buckling is considered too. For this 
reason circular tubes are better than square tubes because the buckling load of 
curved walls is higher than that of flat walls. 
 

 
 

𝜎𝑐𝑟 =
𝐸𝑡

𝑅√3(1 − 𝑣2)
 

The critical stress causing wall buckling of thin-wall circular tubes can be found as: 

𝐸 & 𝑣 are young’s modulus and poisson’s ratio and 𝑅 & 𝑡 are the tube radius and wall thickness. 
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Columns with Eccentric Loading 

In most applications the load is not applied at the centroid of the cross-section, but 

rather it is eccentric. 

 The distance between the centroidal axis and the point of load application is 

called the eccentricity “𝑒”. 

 

 Considering a pinned-pinned column with eccentric 

load “𝑃”. 

The bending moment developed in the column is: 

                          𝑀 = −𝑃(𝑒 + 𝑦) 

Using the beam governing equation  
𝑑2𝑦

𝑑𝑥2
=

𝑀

𝐸𝐼
 we get: 

                        
𝑑2𝑦

𝑑𝑥2
+

𝑃

𝐸𝐼
𝑦 = −

𝑃𝑒

𝐸𝐼
 

Using the same procedure used before to solve the differential equation, and 

the same B.C.s we can obtain the deflection equation. The maximum deflection 

occurs at mid-span (x=L/2) and it is found to be: 

                        𝛿 = 𝑦𝑚𝑎𝑥 = 𝑒 [𝑠𝑒𝑐 (
𝐿

2
√

𝑃

𝐸𝐼
) − 1] 

and thus, maximum moment at mid-span is: 

                      𝑀𝑚𝑎𝑥 = 𝑃(𝑒 + 𝛿) = 𝑃𝑒 𝑠𝑒𝑐 (
𝐿

2
√

𝑃

𝐸𝐼
) 

The maximum compressive stress at mid-span has two components; axial and 

bending: 

                      𝜎𝑐 =
𝑃

𝐴
+

𝑀𝑐

𝐼
=

𝑃

𝐴
+

𝑀𝑐

𝐴𝑘2
 where “c” is the distance from the 

neutral axis to the outer surface 
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Substituting the value of the maximum moment at mid-span we get: 

                                       𝜎𝑐 =
𝑃

𝐴
[1 +

𝑒𝑐

𝑘2
 𝑠𝑒𝑐 (

𝐿

2𝑘
√

𝑃

𝐸𝐴
)] 

where the term (ec/k
2) is called the eccentricity ratio 

 If we set the maximum value of compressive strength to be equal to the 

compressive  yield strength of the column material “𝑆𝑦𝑐” we can write:  

                                     𝑷 =
𝐴 𝑆𝑦𝑐

1 + (
𝑒𝑐
𝑘2)  𝑠𝑒𝑐 (

𝐿𝑒

2𝑘
√ 𝑷

𝐸𝐴)

 

Where 𝐿𝑒  is the effective length for any end condition 

 Note that “𝑷” appears twice in the equation, thus this equation needs an 

iterative process to find the critical buckling load. 

 For the first iteration the critical buckling load obtained from Euler formula 

“𝑃𝑐𝑟” is used, and the iterations continue until both sides converge. 

 

 

 

 

 

 

Struts, or Short Compression Members 

When a short bar is loaded in compression by a load “𝑃” acting along the centroidal 

axis, the stress increases uniformly as σ = P/A until it reaches the yield strength of the 

material. 

Max compressive 

stress at mid span 

The secant equation 

Critical load decreases with 

increasing eccentricity ratio 
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However, if the load is eccentric an additional component of stress, 

due to the bending moment, is introduced: 

                        𝜎𝑐 =
𝑃

𝐴
+

𝑀𝑦

𝐼
=

𝑃

𝐴
+

(𝑃𝑒)𝑦

𝐼
=

𝑃

𝐴
(1 +

𝑒𝑦

𝑘2
) 

 The maximum compressive stress occurs at point “B” on the 

surface where 𝑦 = 𝑐  

                       𝜎𝑐 =
𝑃

𝐴
(1 +

𝑒𝑐

𝑘2
)  

 If the maximum stress value is 𝑆𝑦, then we can solve for the critical load 𝑃𝑐𝑟. 

 

 To distinguish short columns (or struts) from long columns with eccentric loading 

the slenderness ratio is used, where the limiting value is: 

                             (
𝐿

𝑘
)

2
= 0.282√

𝐴𝐸

𝑃
 

                                    if  
𝐿

𝑘
> (

𝐿

𝑘
)

2
                𝐿𝑜𝑛𝑔 𝑐𝑜𝑙𝑢𝑚𝑛 (𝑢𝑠𝑒 𝑠𝑒𝑐𝑎𝑛𝑡 𝑓𝑜𝑟𝑚𝑢𝑙𝑎)

                         if  
𝐿

𝑘
< (

𝐿

𝑘
)

2
                𝑆𝑡𝑟𝑢𝑡 (𝑠ℎ𝑜𝑟𝑡 𝑐𝑜𝑙𝑢𝑚𝑛) 

 

 

Limiting value of slenderness ratio 

for columns with eccentric loading 

See Example 4-20  from text 

 


